

Meeting Capture V2.1 ɀ Adding functionality to your

Microsoft Teams meetings with the use of the Power

Platform!

Initially Out -of -the-Box (OOTB), Meeting Capture is developed by Microsoft, expanded

by MVP Reza Dorrani and further tweaked by me to adapt and adjust to our ways of

working.

In the guide below, I break down some of the features Reza implemented i n Meeting

Capture, the process I use to tailor the app (including codes used) and a few useful

lessons I've learned when developing on top!

The App:

Meeting Capture is an all -in-one tool for capturing information during meetings as they

happen. Users can view meeting details, take notes and pictures of whiteboards, sketch,

assign tasks, and easily schedule follow up sessions.

https://powerusers.microsoft.com/t5/user/viewprofilepage/user-id/50614

Choosing ɈTodayɉ or ɈTomorrowɉ meetings:

Moving the OOTB Meeting Capture app forward, and tweaking RezaɅs V2, you can see

from the front screen that a few extra features have been added. Firstly, and quite

impressively, the ability to view meetings with a ɈTodayɉ or ɈTomorrowɉ scope ɀ all at the

click of a button!

ϥ achieved this by tweaking RezaɅs initial drop-down choice fi eld, and inserting some

OnSelect code to an icon:

// Here I u se UpdateContext to show/hide next/back icons

UpdateContext({NextDay:true});

// And based on this being a set icon/button, here I set a v ariable to perform a

calculation on the collection/gallery return (setting MeetingTimeline to 2

[Tomorrow])

Set(MeetingTimeline,2);

//Snippet of code from Reza to build a collection that stores Events from the

Office365.GetEvents connector, based on whether the variable above is a 1 (today)

or a 2 (tomorrow). In this case, we are selecting "Tomorrow" which equates to a 2

and therefore the 2nd piece of this If Statement will be used as the evaluator

(using the DateAdd function)

If(MeetingTimeline=1,

ClearCollect(

 AllFutureEvents,

 Office36 5.GetEventsCalendarView(

 MyCalendarID,

 Text(Today(), UTC),

 Text(DateAdd(Today(), MeetingTimeline, Days), UTC)).Values

),

ClearCollect(

 AllFutureEvents,

 Office365.GetEventsCalendarView(

 MyCalendarID,

 Text(DateAdd(Today(), 1, Days), UTC),

 Text(DateAdd(Today(), MeetingTimeline, Days), UTC)).Values

)

);

This icon then has its Visible property set to ! NextDay which will automatically hide it

once pressed (to stop users from being able to continue moving through the days) ɀ

drawing your attention here to the use of the NOT operator, as weɅre setting the

Context variable to true OnSelect.

Using a Calendar View to choose any meeting:

First thing s first, we need to create a new screen. Using the built -in template, we can

create a Calendar screen:

//Using the results of the above collection, Reza now builds his final collection

that is used on the gallery. He first adds a column to his new collection that he

then performs a calculation on whether the meeting is current or not - which he

later uses within the gallery to display a visual indicator of "Current Meeting".

The filter he is applying here from above is based on how long the meetings last,

filtered to reduce the potential of a holiday or other event being pulled in to the

app

ClearCollect(

 MeetingsOnly,

 Filter(

 AddColumns(

 AllFutureEvents,

 "isCurrent",

 DateDiff(

 Start,

 Now(),

 Seconds

) > 0 && DateDiff(

 Now(),

 End,

 Seconds

) > 0

),

 DateDiff(

 Start,

 End,

 Hours

) < 6

)

);

//Using a CountRows formula, Reza then sets a variable to allow him to interrogate

and automate the process (using the column he inserted in his above ClearCollect),

followed in IF statement formul a below

Set(NumberOfCurrentMeetings, CountRows(Filter(MeetingsOnly, isCurrent)));

//If the user has a current meeting, and it is the only one, Reza then uses a

variable to automatically select that meeting (automating the process slightly,

presuming the u ser wants to write notes relating to a meeting that is currently

active

If(

 NumberOfCurrentMeetings = 1, Set(AutoSelectMeeting, false);

Set(SelectedMeeting, LookUp(MeetingsOnly, isCurrent))

)

Using this built -in screen, we are provided with all the complex functionality completely

OOTB. The only feature we then need to add is a small amendment within the gallery

view which will allow us to ɈSelectɉ a meeting:

Placing a button into the gallery, Reza insert s the following code to allow this to provide

an ɈAny meetingɉ picker:

Extra functions (Attachments, Audio , etc.):

As with most meetings, having text notes on its own is not ideal. Because of this, Reza

built in the ability to capture audio and attachments alon gside sketches, images , and

photo uploads. Each one of these functionality pieces operate on its screen, connected

using a menu collection that can be created manually if you prefer it (which I do

personally)!

//Set the variable that depicts which meeting notes you'll be taking

Set(SelectedMeeting, ThisItem);

//Navigate to the meeting notes screen

Navigate(HomeScreen, None);

//Set the variable that will show the pop - up presented to user upon loading

home screen

Set(ShowDataLossWarning, true);

//Clears a feature not yet finished (task tracking with time/cost

estimates)

Clear(Calculations);

//Builds the new attendee list that's relevant for the meeting selected

from this calendar

ClearCollect(CalendarItemInfo, Office365.CalendarGetItem(MyCalendarID,

galCalendarEvents.Selected.Id).Attendees)

A useful feature on each of these screens, which I continued to add for all of them, is to

then display the outputs in a gallery ɀ mainly because I know how common it is to

attach, upload and record something and need to delete it because itɅs wrong! Adding a

gallery and linking it to the output allow s me to place a small trash icon, with a basic

OnSelect using the Remove function:

I then ensured all of these galleries were added to all the added functionality pieces, for

example on the image upload:

Full visibility of all added attachments:

Based on the idea that each meeting might end up being extremely large (in respect to

added audio, attachments, pictures and sketches), it made sense to ensure there was a

single place to manage these attachments. Using the attachment icon on the OOTB

meeting capture screen, we move to the Attachments Screen:

In here, Reza had added the required galleries , however , I felt a different visual display

would benefit the users more and so with a combination of some Font Weight snippets

and some CountRow functions, I created the following attachment screen:

Each piece of this runs on a similar principle, for example:

What you can see here is that ϥ am using a combination of plain text ɈPhotosɉ and a

CountRows function on the Photos collection to display ɈPhotos (1)ɉ. Moving this a step

forward, I have then placed the Photos and Sketches in a tab format, using the

UpdateContext variable to show or hide the elements for each option:

The way this is broken down will allo w my users to select either ɈPhotosɉ or ɈSketchesɉ,

and the result is that each of the relevant elements is using a Visible set to the related

Context variable, for example:

Each element (lblPhotosCount, galPhotos, lblPhotoHeader and imgPhotos) has its

Visible property set to TabOne, meaning that they will only be visible when TabOne =

true, and likewise for TabTwo and each of the sketch elements. This is then operated

based on the OnSelect of the labels, shown in the previous image.

What this allows me t o do is utilise the space on the screen and offer the user the ability

to look and browse the attachment categories they feel is most important. As you can

also see, I have ensured there is also a trash icon placed inside the galleries to allow the

users t o tidy and clear out anything not needed from this screen too.

The Attachments and Audio Files tabs are slightly different as the galleries Reza added

are marginally smaller. That said, I found they would display better on a permanent

display, with a Visible p roperty used to hide the galleries if there is nothing present in

their respective collections, for example:

To offer the user slightly easier functionality too, I then amended the FontWeight

property of Attachments and Audio Files only to highlight bold if, yes ɀ you guessed it ɀ

there are items within the collections too! All based off a simple IF statement format:

Rich Text Notes:

ϥtɅs also worth noting that while the OOTB Meeting Capture app allows you to capture

basic notes, Reza made a swap of the standard text box over to a rich text box to allow

you to achieve rich text formatting:

Exporting:

Using the Finish & Save button from the Home Screen, we can move to the most crucial

piece of this app ɀ the exporting!

This button moves us through to the Export Screen, where we can now select the places

to which we would like to export these captured items. One functionality piece worth

noting here that Reza included is the ability to add a new OneNote section directly from

within t he app itself:

This Add New Section button then has the following code on the OnSelect property:

Once you've chosen each of the areas you wish to export, we are then allowed to add

extra attendees if you need to FYI someone, or we can continue straight through to the

ɈExportɉ option.

Other useful features:

Moving this app away from being a quick -use feature for a meeting and positioning it as

more of a tool and platform, the ability to both ɈCapture another meetingɉ and also

ɈSchedule a meetingɉ are two features added by Reza that are extremely useful.

Focusing on the first, which on the premise is relatively simple, is the use of a navigate

function to take us back to the initial start -up screen:

The Schedule Meeting, however, has some extra complexity to it.

//Using the OneNote connector, we are able to take advantage of the

CreateSectionInNotebook option - to which we are using the dropdown choice

to select the relevant notebook and the freetype text box to specify the

name of the new section

'OneNote(Business)'.CreateSectionInNotebook(drpOneNoteBookSelect.SelectedTex

t.Key,{name:txtNewOneNote.Text});

//Refresh the ClearCollect and Reset the text box, updating the drop down

with the new addition

ClearCollect(OneNoteSections,'OneNote(Business)'.GetSectionsInNotebook(drpOn

eNoteBookSelect.SelectedText.Key).value);Reset(txtNewOneNote);UpdateContext(

{Sec tionAdded:true})

For instance, a button placed on the front screen allows easy navigation to this feature,

on which Reza has added an OOTB Email screen:

However, Reza has also taken this one step further and added in the ability to allow

meeting schedul es to show ɀ aiding the entire process!

